Numbers is fake
There are no odd numbers divisible by 2
Submitted 1 day ago by FreshParsnip@lemmy.ca to [deleted]
Comments
lohky@lemmy.world 14 hours ago
TherapyGary@lemmy.blahaj.zone 1 day ago
- Try again.
AlmightyDoorman@kbin.earth 1 day ago
So there are infinite prime numbers,
there exists only one even prime number,
the odds of an prime number beeing odd is 100% ((∞-1)/∞)=100%)
2 is an prime number, therefore 2 is odd and is divisble by itself aka 2.
Q.e.d.HeyThisIsntTheYMCA@lemmy.world 1 day ago
Yup I posited 2 is odd by way of being prime but I didn’t get that far because I have a cold
s@piefed.world 1 day ago
(±sqrt(81) + 3)/6 is both odd and divisible by 2
davidagain@lemmy.world 1 day ago
Correction, it’s either odd or it’s divisible by two.
s@piefed.world 22 hours ago
Superposition since both +9 and -9 are in the expression
EffortlessEffluvium@lemmy.zip 1 day ago
So.
There are no even numbers divisible by zero.
Toes@ani.social 1 day ago
By god they are right, this might change the future of mathematics!
`// 2024‑edition Rust use std::rc::Rc;
/// Church numeral: given a successor
s: fn(u32) -> u32, /// returns a function that appliessn times. type Church = Rc<dyn Fn(fn(u32) -> u32) -> Rc<dyn Fn(u32) -> u32>>;/// 0 ≡ λs.λx.x fn zero() -> Church { println!(“Define 0”); Rc::new(|_s| Rc::new(|x| { println!(" 0 applied to {}“, x); x })) }
/// succ ≡ λn.λs.λx. s (n s x) fn succ(n: Church) -> Church { //
labelis printed before the closure is created, so the closure // does not capture any non‑'static reference. println!(“Build successor”); Rc::new(move |s| { //inneris the predecessor numeral applied to the same successor let inner = n(s); Rc::new(move |x| { // first run the predecessor let y = inner(x); println!(” predecessor applied to {} → {}“, x, y); // then apply the extra successor step let z = s(y); println!(” +1 applied to {} → {}“, y, z); z }) }) }/// Convert a Church numeral to a Rust integer, printing each step. fn to_int(n: &Church) -> u32 { let inc: fn(u32) -> u32 = |k| { println!(” inc({})“, k); k + 1 }; let f = n(inc); // f: Rc<dyn Fn(u32) -> u32> println!(” evaluate numeral starting at 0"); f(0) }
/// Even ⇔ divisible by 2 fn is_even(n: &Church) -> bool { to_int(n) % 2 == 0 } fn is_odd(n: &Church) -> bool { !is_even(n) }
fn main() { // ---- build the numerals step‑by‑step ---- let zero = zero(); // 0 let one = succ(zero.clone()); // 1 = succ 0 let two = succ(one.clone()); // 2 = succ 1
// ---- show the numeric values (trace) ---- println!("\n--- evaluating 0 ---"); println!("0 as integer → {}", to_int(&zero)); println!("\n--- evaluating 1 ---"); println!("1 as integer → {}", to_int(&one)); println!("\n--- evaluating 2 ---"); println!("2 as integer → {}", to_int(&two)); // ---- parity of 2 (the proof) ---- println!("\n--- parity of 2 ---"); println!("Is 2 even? {}", is_even(&two)); // true println!("Is 2 odd? {}", is_odd(&two)); // false // Proof: “divisible by 2” ⇔ “even”. // Since `is_odd(&two)` is false, no odd number can satisfy the // divisibility‑by‑2 condition. assert!(!is_odd(&two)); println!("\nTherefore, no odd number is divisible by 2.");
} `
ieatpwns@lemmy.world 20 hours ago
How do I patch this in
UnderpantsWeevil@lemmy.world 1 day ago
All odd numbers are divisible by 2.
You just get a decimal in the quotient.
FishFace@piefed.social 1 day ago
That’s not what divisible means
gnutrino@programming.dev 1 day ago
All odd numbers are divisible by 2 if you’re work modulo a prime.
HeyThisIsntTheYMCA@lemmy.world 1 day ago
How sharp are your knives?
Diddlydee@feddit.uk 1 day ago
It is, just not in mathematics.