Dark matter
Comment on I wanna ROCK
Sam_Bass@lemmy.world 5 weeks ago
Everything in the universe reflects light. Except black holes. Only things you cannot see do not reflect t light.
starman2112@sh.itjust.works 5 weeks ago
TropicalDingdong@lemmy.world 5 weeks ago
dork matter
starman2112@sh.itjust.works 5 weeks ago
Lmao gotem
ZoopZeZoop@lemmy.world 5 weeks ago
Group hug!
Swedneck@discuss.tchncs.de 5 weeks ago
except you can still arguably see things that don’t reflect light, if you were anywhere near a black hole (let’s imagine it has no accretion disk and thus isn’t surrounded by a bunch of light) it’d be pretty obvious what with the bending of light and how it’s a disk of pure blackness against the backdrop of stars.
lud@lemm.ee 5 weeks ago
And you know, light sources. They don’t need to reflect any light.
CrazyLikeGollum@lemmy.world 5 weeks ago
But they still do. It might just be overpowered by the emitted light.
lud@lemm.ee 5 weeks ago
Does a candle or a black body really reflect light.
Deme@sopuli.xyz 5 weeks ago
The event horizon isn’t a physical object. Does a singularity reflect light? (I’m guessing it’s still a no)
TachyonTele@lemm.ee 5 weeks ago
Once something moves past the horizon any light that bounced off it would be pulled towards the center with it. Effectively making it non reflective. It’s possible all the energy from being crushed into a singularity causes a glow around it, like the disk around the outer area of a black hole. If that’s the case, the glow itself would also be sucked immediately into the singularity.
Most scientists just default to we don’t know anything about the singularity.
ikidd@lemmy.world 5 weeks ago
The accretion disk would emit light as particles were accelerated into the hole. Plus there would be hawking radiation from the evaporative process black holes have.
cows_are_underrated@feddit.org 5 weeks ago
The only form of “light” (it isn’t really light but radiation, which I’d basically the same as light just that it has a different energy value etc) is the hawking radiation.
TachyonTele@lemm.ee 5 weeks ago
Excellent point, thank you.
Deme@sopuli.xyz 5 weeks ago
The event horizon only obscures objects that are inside it, it has nothing to do with reflectivity of the object itself.
An observer situated between the singularity and an object within the event horizon could still intercept the light reflected from said object.
TachyonTele@lemm.ee 5 weeks ago
Light bouncing of an object is what creates reflection. The only way to see reflection past the horizon is to be between the object and the singularity.
MonkderVierte@lemmy.ml 5 weeks ago
The event horizon is the effect of the object not reflecting light.
Deme@sopuli.xyz 5 weeks ago
No. An object within the event horizon is still reflecting light just as it was before falling in. The only difference is in relation to where that reflected light can or cannot go from there.
Sam_Bass@lemmy.world 5 weeks ago
Never seen a singularity so would have to agree it doesn’t. Visible Event Horizons are made up of matter that does reflect light, but if there is no matter involved only light you would likely see is distorted as it passes through it from other sources
Deme@sopuli.xyz 5 weeks ago
No event horizon is made up of matter. Do you mean the matter around and behind the black hole, by which the location and size of the black hole can be inferred?
Sam_Bass@lemmy.world 5 weeks ago
Yeah that’s what I was referring to
tweeks@feddit.nl 5 weeks ago
And things in itself that are too small to see with even a microscope do not reflect light right? Light might interact there but will not reflect in the usual sense, it can however emit light though. As far as I understand that is.
Entropywins@lemmy.world 5 weeks ago
There is a lot to it wavelength, size of reflecting object (if it’s smaller than the wavelength it can’t reflect anything back also applies to emitting photons), reflectance or the fraction of light reflected at the surface of the object (the energy it obsorbs vs energy it kicks back), phase shift, if the photon is traveling from one medium to another with a lower or higher refractive index (redirection of a wave as it passess from one medium to another) it will change the oscillations (kinda like a feedback loop, photons effect electrons in the medium and electrons effect photons right back) like looking at a pencil behind a glass of water distorts what you see. I probably missed some things but I gotta admit it always fascinates me to think about light and reflection.