Open Menu
AllLocalCommunitiesAbout
lotide
AllLocalCommunitiesAbout
Login

Wave Particle Duality

⁨497⁩ ⁨likes⁩

Submitted ⁨⁨1⁩ ⁨year⁩ ago⁩ by ⁨sabreW4K3@lazysoci.al⁩ to ⁨science_memes@mander.xyz⁩

https://lazysoci.al/pictrs/image/e82a75e9-8917-435d-aaba-2556e6f97f62.webp

source

Comments

Sort:hotnewtop
  • Zerush@lemmy.ml ⁨1⁩ ⁨year⁩ ago

    Electron while you look: 😑

    When you don’t look: Image

    source
    • flicker@lemmy.world ⁨1⁩ ⁨year⁩ ago

      And now I’m imagining the boos from Mario. 🤪

      source
    • HereIAm@lemmy.world ⁨1⁩ ⁨year⁩ ago

      Now that is some MSN emoji shit I can get behind. Do I even dare ask how it’s done?

      source
  • variants@possumpat.io ⁨1⁩ ⁨year⁩ ago

    This reminds me I need to clean my PC’s fan filter

    source
  • lugal@lemmy.ml ⁨1⁩ ⁨year⁩ ago

    It do be like this sometimes ngl lol

    source
  • BlasphemicMantis@beehaw.org ⁨1⁩ ⁨year⁩ ago

    You make it look like an innocent peek changes the outcome. In reality you “look” by shooting lasers perpendicular to the plane and observe the electron photon scattering. I wonder if your path changes if I shoot military-grade lasers in your direction.

    source
    • Holzkohlen@feddit.de ⁨1⁩ ⁨year⁩ ago

      This is the reason I never understood it at first. People tell you about it, but tend to leave out the key part to actually understanding it. I don’t get it

      source
      • embed_me@programming.dev ⁨1⁩ ⁨year⁩ ago

        But aren’t the lasers already being fired regardless if you’re looking or not

        source
  • Risus_Nex@lemmy.world ⁨1⁩ ⁨year⁩ ago

    Can someone explain please? We had this in school, but my friend here forgot what this was about.

    source
    • cynar@lemmy.world ⁨1⁩ ⁨year⁩ ago

      It’s the Young’s double slit experiment. It proves that light (or electrons, or even small bacteria) is both a particle and a wave.

      There is a quirk of quantum mechanics. When you observe a system, you fundamentally change it. In scientific terms “observe” has a very different meaning to layman usage. This leads to a lot of woo around the topic. In practice, observing is measuring. In quantum mechanics, the measurement system is of the same scale as the system being measured.

      Imagine observing a good train, by bouncing BB bullets off it with a gun. That is classical measurement. You can assume the BBs had no effect on the train.

      Now imagine the same measurement. However you are measuring how a bunch of glass playing cards are balanced in a house of cards. You can tell a lot still, but the BBs will smash it up doing so. This is quantum measurements.

      In the first, the observer is independent of the system. In the second, the observer is a fundamental part of the system, and so can change its way of functioning.

      source
      • Shampiss@sh.itjust.works ⁨1⁩ ⁨year⁩ ago

        Another classic case of “Scientists are bad at naming things”

        Some people will spend their entire lives thinking math is stupid because of imaginary numbers.

        Thinking that electrons behave differently when you “look” at them.

        Think that radio towers and microwaves cause cancer because they emit radiation

        Many of these are failures of the education system and to be fair scientists don’t have the power of hindsight. Still it annoys me how inefficient it is having these names

        source
      • kromem@lemmy.world ⁨1⁩ ⁨year⁩ ago

        The problem with how you are describing it is that its not that the mechanics of measurement are necessarily causing collapse as if you end up erasing the persistent information about the measurement it reverses the collapse, such as if you add a polarizer to the other slit as well or add a polarizer downstream that untags the initial measurement.

        So in your example, if you simultaneously shoot a bunch of BBs at empty space next to the pile of glass cards where they could have been, or discard the BBs which reflected measuring the cards in the first place, suddenly the pile of glass cards reassemble themselves.

        Attempts to try and dismiss the ‘weirdness’ of the measurement problem or QM behavior IMO ultimately do the reader more of a disservice than a service.

        source
        • -> View More Comments
    • 3ntranced@lemmy.world ⁨1⁩ ⁨year⁩ ago
      [deleted]
      source
      • Risus_Nex@lemmy.world ⁨1⁩ ⁨year⁩ ago

        But Why? What should I Google to find Infos about it?

        source
        • -> View More Comments
  • mihor@lemmy.ml ⁨1⁩ ⁨year⁩ ago

    This is such a mindfuck, the implications are really weird, like WTF is this universe actually made of?

    source
    • Tar_alcaran@sh.itjust.works ⁨1⁩ ⁨year⁩ ago

      This is not how the double slit experiment works though. “Observe”, in quantum physics should be read as “interacts with a thing”, it doesn’t require a conscious observer.

      source
      • mihor@lemmy.ml ⁨1⁩ ⁨year⁩ ago

        I know, but still it’s totally weird.

        source
        • -> View More Comments
      • brain_in_a_box@lemmy.ml ⁨1⁩ ⁨year⁩ ago

        No. If that was how it worked it would be impossible to perform the double slit experiment with anything larger than a single fundamental particle, but that is demonstrably not the case. It would also be impossible to perform it in a gravitational field - or any field, for that matter.

        The truth is that you cannot talk about what the double slit experiment ‘means’ without going into discussion of interpretations of quantum mechanics.

        source
    • DragonTypeWyvern@literature.cafe ⁨1⁩ ⁨year⁩ ago

      Waves

      source
  • 10_0@lemmy.ml ⁨1⁩ ⁨year⁩ ago

    When the wall socket is just out of reach in the dark

    source
  • angrystego@lemmy.world ⁨1⁩ ⁨year⁩ ago

    This is an old one, but it makes me happy every single time.

    source
  • Entity1@lemm.ee ⁨1⁩ ⁨year⁩ ago

    Wave Particle Reality=The Flash

    source
  • CyberTailor@lemmy.world ⁨1⁩ ⁨year⁩ ago

    repost

    source
  • toynbee@lemmy.world ⁨1⁩ ⁨year⁩ ago

    This is a wonderful post.

    source