Thats a chicken/egg peoblem. If enough renewables are build the storage follows. In a perfect world goverments would incentvice storage but in an imperfect one problems have to occure before somebody does something to solve them. Anyway, according to lazard renewables + storage are still cheaper than NPPs.
Comment on Anon questions our energy sector
scholar@lemmy.world 4 weeks agoSometimes the sun doesn’t shine, sometimes the wind doesn’t blow. Renewables are great and cheap, but they aren’t a complete solution without grid level storage that doesn’t really exist yet.
Hugohase@startrek.website 4 weeks ago
LoreleiSankTheShip@lemmy.ml 4 weeks ago
Imagine this (not so) hypothetical scenario:
Yellowstone or another supervolcano erupts and leads to a few years of volcanic winter, where there is much less sunshine. This has historical precedent, it has happened before, and while in and of itself it will impact a lot of people regardless of anything else, wouldn’t you agree it would be better to have at least some nuclear power capacity instead of relying solely on renewables?
Sure, such a scenario is not probable, but it pays to stay safe in the case of one such event. I would say having most of our power from renewables would be best, having it supported by 10-20% or so nuclear with the possibility of increase in times of need would make our electric grids super resilient to stuff
Ooops@feddit.org 4 weeks ago
Yeah let me imagine a supervolcano explosion of that scale to effect global weather patterns. What do you think will happen to your reactors? No, they are not indestructable just because they can handle an earthquake of normally expected proportion.
Microw@lemm.ee 4 weeks ago
Nature catastrophes are the top 1 danger to nuclear energy. See Fukushima.
And the real question here would be a comparison between risk of a nuclear accident event and a renewables-impacting climate event.
friend_of_satan@lemmy.world 4 weeks ago
theguardian.com/…/power-grid-battery-capacity-gro…
US power grid added battery equivalent of 20 nuclear reactors in past four years
wolframhydroxide@sh.itjust.works 4 weeks ago
Let’s be clear, the only reason grid-level storage for renewables “doesn’t exist” is because of a lack of education about (and especially commitment to) simple, reliable, non-battery energy storage such as gravitational potential, like the ARES project. We’ve been using gravitational potential storage to power our mechanisms since Huygens invented the freaking pendulum clock. There is simply no excuse other than corruption for the fact that we don’t just run a couple trains up a hill when we need to store massive amounts of solar energy.
Tar_alcaran@sh.itjust.works 4 weeks ago
There is simply no excuse other than corruption for the fact that we don’t just run a couple trains up a hill when we need to store massive amounts of solar energy.
Well, I don’t know about you, but the nearest hill to me is 200km away, and a whopping 300 meters above me.
Also, scale is a huge fucking issue. The little country of the Netherlands, where I ha etl
So let’s store 1 day of power, at 100% efficiency, using the tallest Alp (the Mont Blanc).
Let’s round up to 5000 meters of elevation. We need to store 2.6e18 joules, and 1 joule is 100 grams going up 1 meter. So to power a tiny little country, we need to lift roughly 5e13 kilos up the Mont Blanc. To visualize, that’s 1.7 billion 40ft shipping containers, or roughly 100 per inhabitants.
wolframhydroxide@sh.itjust.works 4 weeks ago
And hey, you know what, that’s almost got a point. Firstly, I’m in the US, and I’ll freely admit that my comment was highly US-normative. However, I believe my comment on government corruption stands for the US case, where there is an insane amount of space that is already partly-developed in random bits of desert.
Now, let’s get into your claims against the Netherlands case, aside from the ad-hominem of your incredibly condescending tone. Let’s do some “basic fucking maths”, thou king of Numenor:
- Unless the IEA is very, VERY wrong, your claim that the Netherlands consumes “2600 petajoule per day” is INSANELY high. Every statistic I can find shows electricity consumption being between 113 [2] and 121 [1] Terawatt-hours per annum. Let’s divide that larger value by 365 (assuming uniform seasonal demand), then convert that into joules, and we get 1.19 Petajoules per day. more than a THOUSAND times smaller than your number.
- Secondly, this “for a tiny country” bit is spurious, since your “tiny country” is the 33rd-greatest electricity consumer in the world for the 77th highest population [2]
- The assumption that you must store an entire day’s worth of energy demand is ludicrous. Let’s be generous and assume that you have to store 50% of the day’s energy demand, despite the fact that the off-hours are during the night, when electricity demands fall off.
- Next, let us point out that we don’t need to abandon literally every other method of energy generation. From wind energy to, yes, nuclear, the Netherlands is doing quite well for itself outside of solar. Let’s assume that we need to cover all of the electricity that is currently produced using coal, oil and natural gas. All other sources already have infrastructure supporting them, including the pre-existing solar. This amount comes to about 48% [1], so let’s assume 50%.
- Now, we need to cover 50% of 50% of 1.9 petajoules at any one time, or 475 gigajoules, at any one time.
- Because I neither want nor need your supposedly-charitable assumptions, let’s use the actual numbers from ARES in Nevada:
- Their facility’s mass cars total 75000 tons in freedom units, or about 68040000 kg. [3]
- They claim 90+% efficiency round-trip [4], but let’s assume that your condescending tone has made the train cars sad, so they’re having a bad day, and only run at 80% efficiency, despite the fact that we’ve known how to convert to and from GPE with insane efficiency ever since Huygens invented the fucking pendulum clock.
- Now, is this perfect for everywhere? Of course not. Not everywhere has the open space necessary. The ARES site requires a straight shot about 5 miles long, but they managed to find one that, in that distance, drops 2000 feet (~610 m) [5]
- Now, let’s do the math together: 475000000000J / 10m/s^2 / 68040000kg / 80% Efficiency = 880m total elevation needed
- Thus, unless my math is quite off, we would only need 2 of the little proof-of-concept ARES stations running at 80% efficiency to cover the energy storage needs required for your country to completely divest from fossil fuels and go all-in on solar for the remainder of your needs.
Quod Erat Demonstrandum.
[1] www.iea.org/countries/the-netherlands [2] en.wikipedia.org/…/List_of_countries_by_electrici… [3] aresnorthamerica.com/nevada-project/ [4] aresnorthamerica.com/gravityline/ [5] energy.nv.gov/uploadedFiles/…/4 - ARES.pdf
Tar_alcaran@sh.itjust.works 4 weeks ago
You’re right in that I used yearly numbers and wrongly used them as daily numbers. The stats are from the central statistics bureau, and unfortunately it auto translates poorly www.cbs.nl/nl-nl/cijfers/detail/83989NED
The numbers include use of gas and coal for heating and industry, which often get ignored by people (mostly because it makes us look fucking terrible in renewable power stats).
- The assumption that you must store an entire day’s worth of energy demand is ludicrous.
It is, in fact extremely generous, if you’re using the solar+storage method. But let’s go with this and I’ll demonstrate what it means in practice.
Let’s assume that we need to cover all of the electricity that is currently produced using coal, oil and natural gas. All other sources already have infrastructure supporting them, including the pre-existing solar. This amount comes to about 48% [1], so let’s assume 50%.
You just made the switch from “energy used” to “electricity generated”. For a country that still does most of its heating with imported gas, that’s a big difference. The real amount of non-fossil energy is about 18%, call it 80% fossil.
- Now, we need to cover 50% of 50% of 1.9 petajoules at any one time, or 475 gigajoules, at any one time.
So it’s 50% of 80% of 2600/365, or 2.8 petajoules. So that’s only 10 of those facilities. Not great, not terrible. But that’s not the point. Nor is it important that their demo facility has a height difference twice that of the whole country.
Let’s stick with the “one night of power store is plenty”.
That’s true, but only if you can use solar to power your whole day. In other words, to make do with only 1 night of storage, you need to generate all your power for 24 hours in December during December daylight hours. Assuming it doesn’t snow, one solar panel produces about .15kwh on a december day (working off of 2% of yearly production happening in december, and 300Wattpeak panels), or 540kj.
So you’re right, we only need to build 10 facilities twice the height difference of the entire country, to save one average night of power. Unfortunately in order for that to be true, we would also need to cover about 960.000 hectares in solar panels, which is roughly twice the total built up area in the country, including roads.
And that’s assuming you keep a perfectly level energy use throughout the year, and a perfectly level production during December. Neither of which is true, and generally the worst days for solar production are the worst ones for use as well.
On the bright side, if we can put down two extra cities worth of solar panels for every city, we’ll probably have no issues building 600m tall hills by hand as well.
Blue_Morpho@lemmy.world 4 weeks ago
Solar with Battery grid storage is now cheaper than nuclear.
whyNotSquirrel@sh.itjust.works 4 weeks ago
If the demand goes up I have some doubt, also, mining for Lithium is far from being clean, and then batteries are becoming wastes, so I doubt you would replace nuclear power with this solution
I guess in some regions it could work, but you’re still depending on the weather
Ooops@feddit.org 4 weeks ago
You don’t need lithium. That’s just the story told to have an argument why renewables are allegedly bad for the environment.
Lithium is fine for handhelds or cars (everywhere where you need the maximum energy density). Grid level storage however doesn’t care if the building you house the batteries weight 15% more. On the contrary there are a lot of other battery materials better suited because lithium batteries also come with a lot of drawback (heat and quicker degradation being the main ones here).
iii@mander.xyz 4 weeks ago
That’s through, density doesn’t matter much when it comes to grid scale.
What battery technologies are you thinking of? Zinc-ion? Flow batteries?
Jesus_666@lemmy.world 4 weeks ago
They’re currently bringing sodium batteries to market (as in “the first vendor is selling them right now”). They’re bulky but fairly robust IIRC and they don’t need lithium.
scholar@lemmy.world 4 weeks ago
If you’re thinking of the portable battery marketed as ‘solid state’ then that was a scam - a teardown revealed it was just lithium cells
bassomitron@lemmy.world 4 weeks ago
Yeah, lithium mining and processing is extremely toxic and destructive to the environment. On one hand, it’s primarily limited to a smaller area, but on the other hand, is it sustainable long-term unless a highly efficient lithium recycling technology emerges?
ceiphas@lemmy.world 4 weeks ago
you know that grid storage does not always mean “a huge battery”, you can also just pump water in a higher basin oder push carts up a hill and release the potential energy when you need it…
iii@mander.xyz 4 weeks ago
Pumped storage is a thing yeah. But might just as well go full hydro, if you’re doing the engineering anyways.
iii@mander.xyz 4 weeks ago
Would love to see a source for that claim. How many 9’s uptime to they target? 90%, 99%
Blue_Morpho@lemmy.world 4 weeks ago
This is old news now! Here’s a link from 5 years ago. forbes.com/…/new-solar--battery-price-crushes-fos…
This is from last year: lazard.com/…/2023-levelized-cost-of-energyplus/
As to uptime, they have the same legal requirements as all utilities.
I was pro nuke until finding out solar plus grid battery was cheaper.
iii@mander.xyz 4 weeks ago
Source (1)
The project is 1 GW of solar, 500MW of storage. They don’t specify storage capacity (MWh). The source provides two contradicting statements towards their ability to provide stable supply: (a)
And (b)
Source (2) researches “Levelized cost of energy”, a term they define as
It looks at the cost of power generation. Nowhere does it state the cost of reaching 90% uptime with renewables + battery. Or 99% uptime with renewables + battery. The document doesn’t mention uptime, at all. Only generation, independant of demand.
To the best of my understanding, these sources don’t support the claim that renewables + battery storage are costeffective technologies for a balanced electric grid.
mosiacmango@lemm.ee 4 weeks ago
Uptime is calculated by kWh, I.E How many kilowatts of power you can produce for how many hours.
So it’s flexible. If you have 4kw of battery, you can produce 1kw for 4hrs, or 2kw for 2hrs, 4kw for 1hr, etc.
Nuclear is steady state. If the reactor can generate 1gw, it can only generate 1gw, but for 24hrs.
So to match a 1gw nuclear plant, you need around 12gw of of storage, and 13gw of production.
This has come up before. See this comment where I break down the most recent utility scale nuclear and solar deployments in the US. The comentor above is right, and that doesn’t take into account huge strides in solar and battery tech we are currently making.
iii@mander.xyz 4 weeks ago
That’s stored energy. For example: a 5 MWh battery can provide 5 hours of power at 1MW.
What uptime refers to is: how many hours a year, does supply match or outperform demand.
This is incorrect. Under the assumption that nuclear plants are steady state, (which they aren’t), to match a 1GW nuclear plant, you need a 1GW battery, with a capacity of 1GWh.