KillingTimeItself
@KillingTimeItself@lemmy.dbzer0.com
- Comment on nuclear 3 days ago:
ideally you wouldn’t want it in between, but beside, you would implement it as a “load smoothing” device, along side production, probably at a factor of regulation specified amounts.
Modern solid state conversion is very efficient and highly effective, it’s just not great at the inertial problem, though it can be mitigated. It’s just not as clean.
- Comment on nuclear 3 days ago:
that’s still just inertia though…
Now just using the complicated AC coupling of DC energy, through complex electronics…
All when you could just, big motor with massive mass spinny real fast like, and then when the mass starts spinning the motor, it makes power.
Mechanically, it’s probably both cheaper, and more cost effective to just use a flywheel, which is literally going to be an inertial system.
- Comment on nuclear 3 days ago:
sick
- Comment on nuclear 3 days ago:
hydro works in the exact same way, just with water instead of steam, solar works using PV technology, so it’s fairly novel.
And wind is basically the same thing, just using the air, instead of steam.
It’s all mechanically the same at the end of the day, excluding solar. The primary difference is that we don’t burn fuel for heat to make steam, we use potential, or kinetic energy from our environment instead.
Also to be clear, if we’re being pedantic and nitpicky, when i say most i mean percent of production. The vast majority of production globally is through coal, oil, and natural gas. All using thermal processes. And some nuclear, though not as much as solar/wind though.
- Comment on nuclear 3 days ago:
there is actually a significant history with hydropower, back when it was growing as fast as it could. We discovered that it had significant ecological impacts, in particular on things like salmon migration here in the US, so now we have to seed rivers, and have done that since we’ve built most of those plants.
There’s a reason it’s fallen out of favor. Although pumped hydro i think is uniquely equipped since it’s not nearly as disruptive as building a massive dam in a huge river.
- Comment on nuclear 3 days ago:
I think people underestimate the value of intertia in power generation. I liken it to the way capacitors regulate voltage changes or coilovers absorb bumps and vibrations.
the best way to think about it is a literal flywheel, because that’s what this is, just at a grid scale, and directly tied to the frequency.
The inertia of the generators connected to the grid helps stabilize frequency changes caused by blackouts, power plant issues, etc. by resisting and thereby slowing down frequency decline. It buys time for grid operators to find a way to balance loads in a way that doesn’t weaken or disable the grid as a whole.
TLDR it moves the “OH SHIT OH FUCK” window from about < 1ms worth of time in the worst cases, to the much more manageable, seconds window.
It’s a potential challenge with moving to renewables, but not a significant one, i think. This is also a big advantage to having sources based on thermal generation, like nuclear.
- Comment on nuclear 3 days ago:
this is sort of true, it depends on the array, but from what i understand, unless you’re doing an experimental array, it’s most common to just use fixed axis mounted panels, it’s much cheaper and more cost effective that way. Ideally you would use a tracking array, which is better, but more complicated, and requires significantly more maintenance and investment. Single axis tracking arrays might be a clever solution to this problem though.
Regardless, it’s not relevant to the grid inertia problem at hand.
- Comment on nuclear 3 days ago:
Did people during the concept and design phase of these anticipate them causing disasters?
in terms of the RBMK? Yes, it was noted in the design specifications that it gets particularly unstable at low power levels due to xenon poisoning. The operators were also aware that they were operating outside of design spec, and not following the recommended operating procedure. They had also remove WAY more control rods than ever should’ve been removed.
In every possible definition of it, they fucked up in literally every possible way.
Did the people who operate them adhere to best safety practices, maintenance and regulations?
in what way? In most cases, the vast majority of them in fact, yes. This is why only a handful of reactor plants have had issues like this, and the vast majority are operating perfectly fine until this day. Safety practices, maintenance, and regulations are a problem in every industry, so unless you want to argue we should stop doing everything because “bad things happen sometimes” this isn’t really an argument unfortunately.
If you need a better example, just look at nuclear powered submarines, there has never been an accident. Including all of the various sinkings that have happened throughout the years.
Did the regulatory authorities ensure that there would be no disaster possible through enforcing said regulations, in particular regarding location specific concerns such as Tsunamis in Fukushima?
So in this case it’s more complicated. Japanese culture is a little different to western culture, so this was ultimately a failure of culture, and you can still see the effects of this today with how TEPCO handles itself. At the time nuclear regulation was extremely lax, due to how “formal” it was, so that was the ultimate cause of this problem, but again, this happens in literally every industry.
As long as you have the same human characters in the same economic structures in the same administrative structures, there is no reason to be confident, that these disasters will not happen again.
as long as you have people, and capital, then people should not do anything ever in the potential scenario that somebody gets hurt, or worse, injured, or even maybe killed in an event that shouldn’t have otherwise happened* FTFY
And to be clear, the human impact of nuclear energy, INCLUDING all of these disasters is STILL lower than coal, gas, or oil, and on par, if not better than solar, and especially wind.
- Comment on nuclear 4 days ago:
have we built and RBMK reactors since chernobyl? Have we built and confusing and badly maintained reactors since TMI (that weren’t legally operating btw) have we built any BWR reactors in bad places, with no concern for safety since fukushima?
- Comment on nuclear 4 days ago:
I heard that Fukushima was problematic because non-engineers thought it would be easier cheaper?)
fukushima was problematic because literally everything in the chain of safety that should’ve happened, either didn’t or was ignored, due to callous stupidity.
If literally any one thing had gone differently, there’s a good chance it wouldn’t have been that bad.
- Comment on nuclear 4 days ago:
If everyone accepted nuclear power the same way we accept cars, then you can be sure capitalism would cut corners on nuclear safety…
and yet, cars keep getting safer, and safer every year, they also keep getting larger, and more expensive and harder to repair, but they do get safer.
Interesting.
- Comment on nuclear 4 days ago:
what do they call all the waste mining material? The kind of shit that they leave in huge piles, to get rained on, which leeches all kinds of fun shit into the ground?
oh right, they call them tailings. Surely we’ve never seen mass ecological fallout from tailings getting into, let’s say, a river.
- Comment on nuclear 4 days ago:
Fukushima? It was 13 years ago, not that long. It didn’t strait up explode like a nuclear bomb, and neither did Chernobyl, but still;
fukushima was a BWR design, put on the coast of a place known for having tsunamis, and wasn’t properly equipped with emergency generators (they flooded, oopsies) which they couldn’t get to, in order to service the reactor, due to the roads being fucking yeeted.
Literally any other plant on earth is going to have a better outcome.
- Comment on nuclear 4 days ago:
Also, there’s still no solution to nuclear waste beyond burying it and hoping that no one digs it up.
what about shit like lead? Or arsenic? That shit doesn’t go away, yet we still use it all over the place, maybe not arsenic, but still lead is huge.
- Comment on nuclear 4 days ago:
But Fukushima did render a fairly large area uninhabitable, and the ongoing cleanup is still costing billions every year.
ironically, there has been research to determine that a lot of the initial evacuation actually exposed people to MORE radiation, than had they not evacuated, interestingly, they did see an increase in cancer rates, and what not, down the road. However, it wasn’t statistically significant compared to other stats from other places.
So even if it did matter, it seems in terms of healthcare, it was a statistical anomaly, more than a concern.
Plus now we have some really cool radiation detecting networks that are volunteer(?) led, it’s been a while since i’ve read into this, but these systems give us a MUCH better idea of what’s happening now with radiation, than when it happened. So if it did happen again, the results would be even better.
- Comment on nuclear 4 days ago:
i mean, the titanic was also definitionally, not unsinkable, they just called it that.
- Comment on nuclear 4 days ago:
how many cancers have the witnessed from the likes of coal power? Or things like asbestos? Shit like arsenic, or worse, lead. They probably have a significant IQ drop from leaded fuel, assuming they’re american.
- Comment on nuclear 4 days ago:
so basically, if you define a leaf as a caterpillar, it’s basically the same thing, got it.
- Comment on nuclear 4 days ago:
that’s the thing though, the exponential chain reaction isn’t possible.
The problem is that when fuel breaks the strictly controlled fuel rod environment, it stops being cooled properly, and regulating it becomes more interesting (not impossible, there are some clever solutions out there, look at metal cooled reactors for example) and as a result, the spicy particle generation tends to break containment, which is why we have things like PCVs, which contain the corium long enough to at least prevent the elephants foot troll, which is then contained by the secondary containment (the building around it) which is also contained by the rest of the building, surrounding the containment building.
It’s pretty hard to fuck up a reactor. Even harder when the idle state of the reactor is safe, as is with metal cooled reactors. Those are some of the most promising designs, because you can literally just do nothing with them, and nothing bad happens.
- Comment on nuclear 4 days ago:
First of all, a lot of that uranium seems to have been there and slowly decaying for a long time. I think, what we humans did was to “wake it up” and turn it into some more violently-reacting other elements, for the sake that we get the energy out of it at an acceptable pace. Now, though, it’s severely more dangerous than it was before.
it’s weird, but it’s not “more violent” it’s just more energetic. Either through enrichment, making it more potent, which is an industry standard across the entire western world. Or through making fertile material, like uranium 238, fissile by going through the decay chain until it becomes something more spicy, like pu 239 or whatever.
The big problem is that the energy it releases is definitionally incompatible to human life. That’s the ONLY problem.
- Comment on nuclear 4 days ago:
Nuclear is more expensive, and the cost is growing. There will be almost certainly be no private investment in nuclear in the future unless it’s ideologically driven.
even if this is the case, i still think it’s a good idea to at least invest in research and development in nuclear fission, which might even help fusion down the road. Not to mention it’s always good to have alternatives. Would be a shame if we found out that solar panels are actually the new asbestos or something silly.
- Comment on nuclear 4 days ago:
Nope, solar cells are solid state devices. ;)
except for the fact that you actually want a grid tied interia component for stability.
So even in that case, you still tangentially need a “spinning mass” even if emulated in software with how it supplies energy to the grid. It’s still technically there.
- Comment on nuclear 4 days ago:
I think there’s a way to use lasers to generate electricity, too.
i’ve read some really cursed direct photonic conversion theory from nuclear energy. It’s uh, novel. Definitely a pipe dream though.
- Comment on nuclear 4 days ago:
It’s not like a hydro plant is going to come back and haunt you in a 100 years from now.
the ecological impact of it, probably will. But that depends on whether you consider altering the ecological environment a “bad” thing or not.
- Comment on nuclear 4 days ago:
fukushima was entirely a skill issue, just don’t
TMI was entirely a skill issue
chernobyl was a bad design, and a skill issue, plus a few other skill issues.
the runit dome was from atomic bomb testing right? Not even real nuclear power, it may have been a fission bomb, but i’m not looking into it far enough. Weird that you don’t mention nagasaki or hiroshima in that list.
the hanford site, i’m not familiar with, but im guessing this is a development plant? And probably just procedural skill issues? There have been a number of smaller accidents, most of which are due to people being stupid.
- Comment on nuclear 4 days ago:
anywhere from thousands of years to millions of years
only in a strictly thermal reactor environment, if you’re using a fast reactor, something like the SSR that is currently being worked on in canada, it can both burn waste, and reduce it’s lifespan to a much more reasonable length.
As always, development is the problem, if we had more energy being focused on this, we would be farther along, but such is scientific development.
- Comment on nuclear 4 days ago:
solar cells have no mechanically moving parts
ironically, large grid tie systems are starting to “emulate” the spinning mass behavior of turbine generators, since there’s an exponential failure issue waiting to crop up if you aren’t careful, as texas has already learned, a very significant part of your solar generation can just, go offline, if it decides grid conditions aren’t suitable, which can lead to LARGE drops in power production and frequency, which is likely to kill even more generation.
So the solution is to make it emulate the physical mass tied to a turbine, or at least, more generously provide power in fault like conditions, to prevent this sort of exponential breakdown of the grid. You could of course, use a large spinning flywheel to regulate grid frequency, as is being used in a few places right now. I’m not sure how popular that is, outside of wind energy. It’s likely to get more popular though.
weird little side tangent, but the frequency of electricity on the grid is essentially directly tied to the rotational speed of all turbines currently on the grid, meaning there is a very large inertia in the grid frequency, it’s weird to think about, but makes perfect sense, and it provides for an interesting problem to solve at large scales like this.
Batteries are really fucking cool btw, the fact that you can just chemically store electricity, and then use it, is really fucking crazy. The fact that it’s the most accessible technology is also insane to me. But maybe it’s just the adoption being the way it is.
- Comment on nuclear 4 days ago:
i mean… This is how most electricity production works.
- Comment on Hey is Sharing Luigi’s Manifesto on Social Media Actually "Glorifying Violence"? Because Reddit Said So 😭 4 days ago:
i would argue no, but then again, there’s a difference between posting it, and supporting it.
glorifying and supporting violence is almost always against the rules on any platform anywhere. So.
- Comment on Anon creates a business plan 1 week ago:
They’re not against it, and they don’t.
survey some waiters around you and report back.
Source, am not a waiter, i don’t know.