“Spiders can detect danger coming their way with an early-warning system called eyes.”
Really fantastic book. I did have some notes though. Firstly, if honeybees have such low dpi vision, how can they see each other dance? I assume it’s because they’re experiencing the dance some other way, but how? (Also it’s hella dark in there, isn’t it?)
He says many times that humanity’s umwelt is dominated by sight, but I very much disagree. To lose my hearing or sense of touch would make me feel quite blind, as I use them to perceive things outside my cone of vision constantly. Being in deep water is unnerving for this reason, because I can’t “see” what’s around me, and I have this whole new area below that I can’t hear either. So I have to wonder whether other people feel that way he does or whether my usage is more unique.
He really blew my mind when describing exafference and reafference because these things are reliant on a sense of self in the first place, which means that even the worm in his example must have some form of ego.
kayzeekayzee@lemmy.blahaj.zone 2 weeks ago
For anyone wondering why they would need to see polarized light: I looked actually into this a few months ago!
Other animals that are trying to blend in with the environment often use countershading appear less conspicuous. The problem with this is that this method can’t replicate the polarization of the light behind them, making them stand out if you can see that sort of thing. ((Sunlight in the ocean is always polarized based on the direction of the sun (look up fresnel equations for s and p polarized light))). Even transparent creatures will interrupt the polarization in some way, so this is a very useful skill to have.
Natanael@infosec.pub 1 week ago
More specifically, polarization changes with the angle of reflection of the surface towards the detector / eye / camera, so every bump in the surface gets a color gradient different from the surroundings when seen by a polarization sensitive eye