Actually, we do already know that we’re close to a theoretical limit of increasing computing power as we currently know it. The transistor can’t really get that much smaller, before it stops working.
Also, if you’re talking about the article as linked, that is a mere introduction to a much longer paper.
JackOverlord@beehaw.org 1 month ago
Whenever I hear someone say that something is impossible with current technology, I think about my grandma. When she was a kid, only some important people had telephones. Doctors, police, etc.
In her lifetime we went from that to today, and, since she’s still alive, even further into the future.
Whenever someone calls something impossible, I think about how far technology will progress in my own lifetime and I know that they’ve got no idea what they’re talking about. (Unless, like you said, it’s against the laws of physics. But sometimes even then I’m not so sure, cause it’s not like we understand those entirely. )
DdCno1@beehaw.org 1 month ago
The thing is, we have no idea where technological progress is taking us. So far, most predictions have been wrong. 50 to 60 years ago, people thought we would already be colonizing other planets by now. Barely anyone was able to predict the Internet, smartphones, social media, etc. - the kind of technology that is actually shaping our civilization’s future right now.
Another aspect that I feel is often neglected is the assumption that technological progress will continue forever or at least continue at this current rapid pace. This wasn’t true in the past and we might simply be experiencing a historical anomaly right now, one that could correct itself very soon in the future, either towards stagnation or even regression.
d0ntpan1c@lemmy.blahaj.zone 1 month ago
The space example is extremely apt. Its possible we could have had tons of space stations, a moon colony, maybe even some other stuff going on around the solar system, asteroid mining, etc. But thay would have at least required the space race to continue longer and for spending to grow to create a big enoigh industry to ensure thay outcome, assuming no capacity or time issue. Alas, we took another path.
Something that seems important to us might not matter in even 10 years, or at least, not have a monetary and/or societal incentive to keep advancing.
DdCno1@beehaw.org 1 month ago
I was also based on the assumption that the rapid progress of aerospace technology that happened in the 1920s to 1960s would continue onward at the same pace, whereas what actually happened was that barriers emerged that nobody was able to circumvent, like for example engineering things to withstand incredibly abrasive Moon dust (or really do anything productive on that lifeless rock), how to deal with the endless pitfalls of a long Mars journey, how to bring down the cost of launch vehicles so that grand projects like giant space stations would even be remotely possible (von Braun was already thinking about stations several times larger than the ISS in 1945). Many of these issues couldn’t simply be solved by throwing more money at them, which is important. Deciders, both in Washington and Moscow, were smart enough to realize this in the 1970s, for the most part at least (the Space Shuttle and its Soviet clone, each a gigantic waste of money, are major counter example from this era).
The point I’m making here is that everyone assumed linear progress in this area, just like there are people currently making many billion dollar bets on linear progress in regards to computer technology in general and AI in particular, but at least, with the benefit of hindsight given past examples, there’s a reasonable amount of doubt this time around.
TranquilTurbulence@lemmy.zip 1 month ago
In addition, technological development can take unexpected twists and turns. For a while, it looked like analogue technology involving gears was going to solve every problem… until transistors were developed and mechanical calculators were soon forgotten. Also, the development of fertilizers revolutionized farming and and food production, which changed the world more than anyone even realized.
sydneybrokeit@beehaw.org 1 month ago
While our exact pacing might be slightly different from the pure extrapolation, human history has been a long, steady increase in the rate of invention. Access to education has meant that more people are making things, and then the next generations build on top of their work to make even bigger things.
Saganaki@lemmy.one 1 month ago
That’s not an apt comparison.
More like “we’ll have flying cars 50 years from now.”
megopie@beehaw.org 1 month ago
I love the flying car example because it reveals a huge issue with the whole “tech will get better” idea. People are still trying to make flying cars happen but it’s running in to the same fundamental issues; large things that are mechanically complex, energy intensive, and moving at high speeds in a crowded urban environments are just too expensive and dangerous.
There is no way around the physical realities, no clever trick or efficiency that will push it over some threshold of practicality.
TranquilTurbulence@lemmy.zip 1 month ago
Could take a while, but how long? Progress tends to be non-linear, so things can slow down and speed up suddenly. I’m pretty sure we’ll get there sooner or later unless we nuke ourselves to oblivion before that. If AI development isn’t prioritized, it could take centuries. Maybe we’re still missing some crucial corner stores we haven’t even thought of yet. Just imagine what it was like to build an airplane in an aged when the internal combustion engine hadn’t been invented yet.