Comment on I'm good, thanks

bitcrafter@programming.dev ⁨12⁩ ⁨hours⁩ ago

See, this is why I prefer the (terribly named) “Many Worlds” interpretation. Unlike the Copenhagen interpretation, it does not privilege measurement over other types of interactions between systems. That is, the wave function never collapses, it only seems to because you, as the observer, are part of the system.

The easy way to see this is to imagine that you put some other experimenter inside of a box. When they perform a measurement, from your perspective the wave function has not yet collapsed, but from the experimenter’s perspective the wave has collapsed. Essentially, it is as if the system in a box has branched so that there are multiple copies of the experimenter within, one who sees each possible measurement result, but because you are outside of it you could, in theory, reverse the measurement and unite the two branches. However, it is important to understand that the concept of branches is just a visualization; it is nothing inherent to the theory, and when things get even slightly more complicated than the situation I have described, they do not meaningfully exist at all.

(Also, if it seems implausible that a macroscopic system in a box could remain in a superposition of multiple states, you actually are not wrong! However, the reason is not theoretical but practical: any system inside the box will interact thermally with the box itself, so unless it is perfectly insulated you cannot help but interact with it and therefore measure it yourself. This keeps going until essentially the entire world cannot help but perform a measurement of your system. Preventing this tendency from screwing things up is one of the things that makes building quantum computers hard.)

source
Sort:hotnewtop