Open Menu
AllLocalCommunitiesAbout
lotide
AllLocalCommunitiesAbout
Login

funny title goes here

⁨145⁩ ⁨likes⁩

Submitted ⁨⁨1⁩ ⁨year⁩ ago⁩ by ⁨fossilesque@mander.xyz⁩ to ⁨science_memes@mander.xyz⁩

https://mander.xyz/pictrs/image/d4912ee7-9484-4f11-99f9-95897d719db3.jpeg

source

Comments

Sort:hotnewtop
  • OpenStars@startrek.website ⁨1⁩ ⁨year⁩ ago

    Hrm, it sounds like the teacher already knew the answer.

    Maybe stop wasting the time of the student then!?

    You’re welcome.

    source
  • Dave@lemmy.nz ⁨1⁩ ⁨year⁩ ago

    Can someone explain this to me? Not the maths, the joke.

    source
    • fossilesque@mander.xyz ⁨1⁩ ⁨year⁩ ago

      knowyourmeme.com/memes/anti-memes

      source
      • Rolando@lemmy.world ⁨1⁩ ⁨year⁩ ago

        Calling !peterexplainsthejoke@lemmy.world…

        source
      • LinkOpensChest_wav@lemmy.blahaj.zone ⁨1⁩ ⁨year⁩ ago

        Old man voice: “Aunt eye memes? In my day, we only had regular memes, and I turned out fine!”

        source
        • -> View More Comments
  • driving_crooner@lemmy.eco.br ⁨1⁩ ⁨year⁩ ago

    The test:

    Solve e^{int_0^1 x2+x+1 dx}

    source
    • Usernamealreadyinuse@lemmy.world ⁨1⁩ ⁨year⁩ ago

      No, copiloot solve this test

      Answer:

      To solve the expression ( e^{\int_0^1 x^2+x+1 , dx} ), we first need to calculate the integral of ( x^2+x+1 ) from 0 to 1.

      The integral of ( x^2+x+1 ) is: [ \int x^2+x+1 , dx = \frac{x^3}{3} + \frac{x^2}{2} + x + C ]

      Evaluating this from 0 to 1 gives us: [ \left[ \frac{x^3}{3} + \frac{x^2}{2} + x \right]_0^1 = \left( \frac{1}{3} + \frac{1}{2} + 1 \right) - \left( 0 + 0 + 0 \right) = \frac{11}{6} ]

      Now, we raise ( e ) to the power of this result: [ e^{\frac{11}{6}} ]

      This is the solution to the given expression. If you need a numerical approximation, ( e^{\frac{11}{6}} ) is approximately 4.953.

      source
  • AtomfriedMegaforce@lemmy.world ⁨1⁩ ⁨year⁩ ago

    …and this student was Albert Einstein

    source