Comment on So much
davidagain@lemmy.world 3 months ago
I don’t think you can use the x0 plus minus delta in the bracket (or anywhere), because then the function that’s 1 on the rationals and 0 on the irrationals is continuous, because no matter what positive number epsilon is, you can pick delta=7 and x0 plus minus delta is exactly as rational as x0 is so the distance to L is zero, so under epsilon.
You have to say that whenever |x - 0x|<delta, |f(x) - L|<epsilon.
affiliate@lemmy.world 3 months ago
unless f(x~0~ ± δ) is some kind of funky shorthand for the set { f(x) : x ∈ ℝ, | x - x~0~ | < δ }. in that case, the definition would be “correct”.
it’s much more likely that it’s a typo, but analysts have been known to cook up some pretty bizarre notation from time to time, so it’s not totally out of the question.
davidagain@lemmy.world 3 months ago
There’s notation for that - (x0 - δ, x0 + δ), so you could say
f(x0 - δ, x0 + δ) ⊂ (L - ε, L + ε)
affiliate@lemmy.world 3 months ago
that would be a lot clearer. i’ve just been burned in the past by notation in analysis.
my two most painful memories are:
there’s the usual “null spaces” instead of “kernel” nonsense. ive also seen lots of analysis books use the → symbol to define functions when they really should have been using the ↦ symbol.
at this point, i wouldn’t put anything past them.
davidagain@lemmy.world 3 months ago
Egregious. I feel your pain.