Comment on Listen here, Little Dicky

<- View Parent
gandalf_der_12te@discuss.tchncs.de ⁨2⁩ ⁨days⁩ ago

Uhm, i remember there’s two definitions for basis.

The basis in linear algebra says that you can compose every vector v as a finite sum v = sum over i from 1 to N of a_i * v_i, where a_i are arbitrary coefficients

The basis in analysis says that you can compose every vector v as an infinite sum v = sum over i from 1 to infinity of a_i * v_i. So that makes a convergent series. It requires that a topology is defined on the vector space fist, so convergence becomes well-defined. We call such a vector space of countably infinite dimension if such a basis (v_1, v_2, …) exists that every vector v can be represented as a convergent series.

source
Sort:hotnewtop