Comment on Anon questions our energy sector
Blue_Morpho@lemmy.world 2 months agoIt looks at the cost of power generation
Yes.
But then you added the requirement of 90% uptime which is isn’t how a grid works. For example a coal generator only has 85% uptime yet your power isn’t out 4 hours a day every day.
Nuclear reactors are out of service every 18-24 months for refueling. Yet you don’t lose power for days because the plant has typically two reactors and the grid is designed for those outages.
So the only issue is cost per megawatt. You need 2 reactors for nuclear to be reliable. That’s part of the cost. You need extra bess to be reliable. That’s part of the cost.
iii@mander.xyz 2 months ago
I’m referring to the uptime of the grid. Not an individual power source.
We’ve successfully banned fossil fuels and nuclear, as is the goal of the green parties
How much renewable production, and bess, does one need to achieve 90% grid uptime? Or 99% grid uptime?
If it’s just 90%, I can see solar + bess beating nuclear, price wise. If the goal instead is a reliable grid, then not.
Blue_Morpho@lemmy.world 2 months ago
Yes you have to build for worst case. That’s what I already said.
You are comparing overbuilt nuclear but acting like bess can’t be over built too. That’s why the cost of storage is the only important metric.
You need an absolute minimum of 2 nuclear reactors to be reliable (Belgium has 7). That doubles the cost of nuclear. But it doesn’t matter because that’s factored in when you look at levelized cost. You look at cost per MWhr. How reliability is achieved doesn’t matter.
Bess is $200 per MWhr.
Ooops@feddit.org 2 months ago
About 115% to 130%. Depending on diversification of renewable sources and locations. The remains are losses in storage and transport obviously.
But shouldn’t you actual question be: How much storage is needed?
For a quick summary of those questions you can look [here](file:///tmp/mozilla_daniel0/Fraunhofer-ISE-Study-Paths-to-a-Climate-Neutral-Energy-System-1.pdf) for example…
iii@mander.xyz 2 months ago
What would 130% grid uptime even look like? 475 days a year without blackout?
I think we’re talking about different things.
Ooops@feddit.org 2 months ago
130% production on average, with excess being stored, minus losses in conversions, transport and storage = 100% demand covered all the time.
Or the longer version: For a stable grid I need to cover 100% of the demand in next to real-time. This can be achieved with enough long- and short-term storage, plus some overproduction to account for storage losses. The 115% to 130% production (compared to actual demand) are based on studies for Germany and vary by scenario, with the higher number for the worst case (people strongly resisting all changes to better balance consumption and south Germany keeping up there resistence to diversify by only building solar while blocking wind power).