Comment on What if?
mexicancartel@lemmy.dbzer0.com 1 month agoWell due to absence of gravitational repulsion, the bonded “atoms” would come closer and collapse right?
Comment on What if?
mexicancartel@lemmy.dbzer0.com 1 month agoWell due to absence of gravitational repulsion, the bonded “atoms” would come closer and collapse right?
hihi24522@lemm.ee 1 month ago
Oh yeah eventually they will. But eventually protons will decay. Could you do something with these bonded “atoms” before they collapse? Probably not as much as you can before an atom decays but yeah you’ve definitely got at least a few million years for most systems right?
mexicancartel@lemmy.dbzer0.com 1 month ago
Unlike proton decay, the “atoms” in your system will accelerate towards each other and will not make any kind of “stable” system as you have mentioned. A chemical bond analogue is not formed but instead a nucler reaction type will occur. But should we call pressing two clay pieces together as some nuclear type process? I don’t think so.
Not to mention electron does not revolve or have ant kind of orbit. Its too different to be called similiar
hihi24522@lemm.ee 1 month ago
Firstly, you are wrong. Binary star systems are a good example this. Secondly, thank you for helping me find more similarities between atoms and stellar systems and learn new words.
From the Wikipedia page for Binary Star System:
Again is it unlikely? Hell yeah but I covered that point previously and the important part is that it is still possible.
Next, I need to thank you because you helped me find out that your “nuclear type reactions” happen and are similar to nuclear combination of atoms.
The orbits of planets in a binary system can be circumbinary which would be the “nuclear type” as you called it where the stars (or most massive body in the system) begin orbiting each other and planets orbit around both as though they were a single massive object.
However, they can also be circumstellar (as I described previously) meaning the two stars orbit each other but the planets orbit only one star each. This would be much more analogous to an ionic bond (though again without polarity) where two atoms are attracted to one another but do not share electrons.
Furthermore, it seems there is even more similarity as the circumbinary systems are more unlikely to break apart but the circumstellar type require stars to be far enough away would make them more easily dislodged. This seems similar to nuclear decomposition being much harder to pull off than chemical decomposition.
But wait, there’s more.
Even if the stars get close enough to touch, they can still be differentiated and are “stable” This seems much more like a nucleus since the “particles” are packed tightly together and the whole “becoming unstable means I eject a particle” kind of screams radioactive decay.
Anyway, there are “periodic solutions” (stable configurations that follow a cycle) to the three body problem and there are likely some for n-bodies. So contrary to your assertion, it is possible to make a stable system with multiple massive bodies that do not combine “nuclear type”.
As you can see from the images on the Wikipedia page, these systems have unique shapes which is what I was referring to as the analog of proteins having specific shapes.
Lastly, the first line of my original comment was that yes, these solar sustems are reminiscent of a wrong model of the atom. I’m well aware of the structure of electron orbitals and Schrödinger’s equations for electron position etc.
My point was not to say that stellar systems are structured just like atoms or behave exactly like them either. My point wasn’t even that there are more similarities that differences. It was simply that there are similarities between the two and that you could build some analogous structures/chemistry with gravitational systems.
mexicancartel@lemmy.dbzer0.com 1 month ago
Binary star system exist because they are revolving around a common center, and its outwards momentum is holding them in place.
The binary systems are formed from splitting of one star or in the formation of the star itself. In your atom model, chemical bonds like bringing together two atoms and they form stable bonds is not possible. If you say this gravitational atom model have more close relation with real atom model than differences, then I could also say two magnets in space which spins around each other due to magnetic force and the centrifugal force(which came from inertia at initial conditions) balancing is also analogous to an atom. You have to perfectly set the velocites and magnetic moments but you will get something like a binary system. I would conclude there are bigher differences than simple structural similiarities to a (wrong) model of atom