Comment on Mythbusters

<- View Parent
merc@sh.itjust.works ⁨6⁩ ⁨months⁩ ago

Just to clarify; you understand that because the engines are pushing on the plane itself and not the wheels, by the time the wheels start moving, the plane is already moving relative to ground and air alike.

The wheels are attached to the plane so they move at the same time as the plane. But, I get what you’re trying to say, that the wheels are effectively being dragged by the plane, they’re not powering the movement. But, what you need to think about is that if you oppose that dragging by moving the conveyor belt in the opposite direction you can prevent the plane from moving at all. Yes, the wheels are merely dragging and there isn’t a lot of friction there, but if you move the conveyor belt fast enough you can stop the plane from moving relative to the ground, which can stop it from moving relative to the air, which can prevent it from taking off.

An anchor sufficient to keep the plane from rolling forward is different because the force it is apply is significantly greater.

No, by definition it’s the same. The conveyor moves with however much speed is necessary to stop the forward motion of the plane. The conveyor would eventually go so fast that it generated enough force to stop the plane from moving, so it’s indistinguishable from an anchor.

Sure, you can deflate the tires and increase the rate of spin on the wheels.

You don’t need to deflate the tires, you merely need to increase the speed at which the conveyor moves to match the speed of the wheels.

if we assume the wheels are indestructible, which I’d argue is only fair, then even if what you’re saying is true and we ramp up the drag induced by the wheels sufficient to counter the engines… then the wind generated by the rolling treadmill would be producing a sufficient headwind for the plane to take off

That seems like an unfair assumption because you’re assuming that the conveyor belt has second-order effects on the air (i.e. generating a “wind” over the wings of the plane), while ignoring the second-order effects the conveyor would have on the wheels (massive heat from friction leading to failure).

On the other hand, this entire conversation assumes the thrust to weight ratio is less than 1. If it’s more than one, well they just…. Go straight up.

I mean, the discussion is of a plane, not a helicopter or a rocket. Even jet fighters with a thrust-to-weight ratio of more than 1 typically have engines that only have that ratio once they’re at high speed, not from a standing start. That’s why even fighter jets on carriers need a catapult-assisted takeoff. A VTOL aircraft like a Harrier wouldn’t need that, but then its takeoff speed is zero, and the myth isn’t very interesting when the conveyor belt doesn’t move.

source
Sort:hotnewtop