Comment on I just cited myself.
barsoap@lemm.ee 4 months agoDecimals require you to check the end of the number to see if you can round up, but there never will be an end.
The character sequence “0.999…” is finite and you know you can round up because you’ve got those three dots at the end. I agree that decimals are a shit representation to formalise rational numbers in but it’s not like using them causes infinite loops. Unless you insist on writing them, that is. You can compute with infinities just fine as long as you either a) bound them or b) keep them symbolic.
That only breaks down with the reals where equality is fundamentally incomputable. Equality of the rationals and approximate equality of reals is perfectly computable though, the latter meaning that you can get equality to arbitrary, but not actually infinite, precision.
…sometimes I do think that all those formalists with all those fancy rules about fancy limits are actually way more confused about infinity than freshman CS students.
Tlaloc_Temporal@lemmy.ca 4 months ago
Eh, if you need special rules for 0.999… because the special rules for all other repeating decimals failed, I think we should just accept that the system doesn’t work here. We can keep using the workaround, but stop telling people they’re wrong for using the system correctly.
The deeper understanding of numbers where 0.999… = 1 is obvious needs a foundation of much more advanced math than just decimals, at which point decimals stop being a system and are just a quirky representation.
Saying decimals are a perfect system is the issue I have here, and I don’t think this will go away any time soon. Mathematicians like to speak in absolutely terms where everything is either perfect or discarded, yet decimals seem to be too simple and basal to get that treatment. No one seems to be willing to admit the limitations of the system.
barsoap@lemm.ee 4 months ago
Noone in the right state of mind uses decimals as a formalisation of numbers, or as a representation when doing arithmetic.
No. If you can accept that 1/3 is 0.333… then you can multiply both sides by three and accept that 1 is 0.99999… Primary school kids understand that. It’s a bid odd but a necessary consequence if you restrict your notation from supporting an arbitrary division to only divisions by ten. And that doesn’t make decimal notation worse than rational notation, or better, it makes it different, rational notation has its own issues like also not having unique forms (2/6 = 1/3) and comparisons (larger/smaller) not being obvious. Various arithmetic on them is also more complicated.
The real take-away is that depending on what you do, one is more convenient than the other. And that’s literally all that notation is judged by in maths: Is it convenient, or not.
Tlaloc_Temporal@lemmy.ca 4 months ago
I never commented on the convenience or usefulness of any method, just tried to explain why so many people get stuck on 0.999… = 1 and are so recalcitrant about it.
This is a workaround of the decimal flaw using algebraic logic. Trying to hold both systems as fully correct leads to a conflic, and reiterating the algebraic logic (or any other proof) is just restating the problem.
The problem goes away easily once we understand the limits of the decimal system, but we need to state that the system is limited! Otherwise we get conflicting answers and nothing makes sense.
barsoap@lemm.ee 4 months ago
But the system is not limited: It has a representation for any rational number. Subjectively you may consider it inelegant, you may consider its use in some area inconvenient, but it is formally correct and complete.
I bet there’s systems where rational numbers have unique representations (never looked into it), and I also bet that they’re awkward AF to use in practice.
The representation has to reflect algebraic logic, otherwise it would indeed be flawed. It’s the algebraic relationships that are primary to numbers, not the way in which you happen to put numbers onto paper.
And, honestly, if you can accept that 1/3 == 2/6, what’s so surprising about decimal notation having more than one valid representation for one and the same number? If we want our results to look “clean” with rational notation we have to normalise the fraction from 2/6 to 1/3, and if we want them to look “clean” with decimal notation we, well, have to normalise the notation, from 0.999… to 1. Exact same issue in a different system, and noone complains about.
apolo399@lemmy.world 4 months ago
The system works perfectly, it just looks wonky in base 10. In base 3 0.333… looks like 0.1, exactly 0.1
Tlaloc_Temporal@lemmy.ca 4 months ago
Oh the fundamental math works fine, it’s the imperfect representation that is infinite decimals that is flawed. Every base has at least one.