Comment on Little Pea Shooters
absGeekNZ@lemmy.nz 1 day agoNo, it’s hard to explain without diagrams.
But as you fall towards a planet (any gravity well); you pick up speed, if the planet is moving away from you, you fall for longer before you catch up. As you climb back up, you don’t spend all of the energy you gained on the way down. That difference is the Slingshot effect.
It also works in reverse, if the planet is moving towards you. You catch up quicker, thus gain less speed. And spend overall more energy than you gained when you climb back out. Slowing down in the process.
kuberoot@discuss.tchncs.de 1 day ago
I’m confused, but this doesn’t make sense to me.
It shouldn’t matter whether you’re moving in the same direction or not for this, because ultimately it’s all relative - if you set the planet as the frame of reference, the direction you come in from doesn’t matter - just the velocity and angle.
What I can see working is calculating the in and out angles - if the exit velocity is at a sharper angle relative to the planets velocity than the entrance angle, then your exit velocity “gains” more of the planet’s velocity than the entrance velocity “loses”.
If you were completely stationary, from the planet’s point of reference, you’re moving with the velocity of the planet. If you then did half an orbit, exiting in the other direction (theoretically), from the planet’s point of reference you have the same speed, just in the other direction - but from the sun’s point of reference, you’re now moving at the planet’s speed on top of the planet’s own speed, thus gaining double the velocity of the planet.
The issue is, of course, I have no idea if I’m making sense, or missing the point.
deaf_fish@midwest.social 1 day ago
As others have said, you are stealing kinetic energy from the planet to go faster. Or giving kinetic energy back to the planet to go slower.
So, relatively, you slow down and the planet speeds up or the planet slows down and you speed up.
kuberoot@discuss.tchncs.de 1 day ago
Right, but as I explained, it’s the how that doesn’t make sense to me - the explanation that you “fall for longer” doesn’t make sense, since 1. with how orbits work, it takes the same energy and time to “fall” as it does to ascend, and 2. at these scales you can use the planet as an inertial frame of reference, so the angle of approach doesn’t matter for how “long” you “fall”, it’ll be the same regardless of whether you’re moving towards or away from the planet.
scratchee@feddit.uk 1 day ago
You mentioned “from the perspective of the planet” before, and I think perhaps that’s the key, from the planet’s perspective you fall and rise with equal velocities and equal accelerations, but crucially the planet is moving relative to other things and curves your orbit, so whilst you might might have the same falling and rising speeds relative to it, they’re not in the same direction, so you’re velocity has changed, and from an external perspective you’ve gained velocity from it.
Imagine you start stationary relative to the sun, with Jupiter barrelling towards you (not on a collision course!). From Jupiter’s perspective you fall towards it, and so from the suns perspective you gain velocity opposite jupiters orbit, but you’re not directly head on so it twists your course (let’s say 90 degrees to keep things simple) then as you leave Jupiter it indeed decelerates you relative, but crucially you’re in a different direction now, (from jupiters perspective) you’re pointed right towards the sun, so as you pull away Jupiter is decelerating you in the sun direction (aka accelerates you away from the sun). So you were both accelerated in the anti-Jupiter-orbit direction and then again in the anti-sun direction. Added together those give you a vector which is non-zero, so you’ve gained speed from Jupiter.
Batman@lemmy.world 1 day ago
your taking advantage of the planets immense kinetic energy.
agroqirax@lemmy.world 1 day ago
This explains it quite nicely: youtube.com/shorts/kD8PFhj_a8s
kuberoot@discuss.tchncs.de 1 day ago
Ayy, I’m not crazy, that sounds like exactly what I described… The only question is, is the explanation of “you spend longer falling” is bs, or if it makes sense if you conceptualize it differently?
absGeekNZ@lemmy.nz 1 day ago
It is difficult to conceptualise.
But you also have to choose the most convenient observer to help you get it.
I would say the easiest way to “get it” would be to consider it from the Suns observation point of view. Choosing the planet or spacecraft just means that you have to consider a lot more relative motion.
Image
Image
This is obviously simplified and the numbers are meaningless. But the concept stands.
Depending of the incoming and outgoing angles; the energy changes are more or less…
Hope this illustrates it a little better.