Comment on I just cited myself.

<- View Parent
barsoap@lemm.ee ⁨4⁩ ⁨months⁩ ago

This is the flawed system, there is no method by which 0.999… can become 1 in here.

Of course there is a method. You might not have been taught in school but you should blame your teachers for that, and noone else. The rule is simple: If you have a nine as repeating decimal, replace it with a zero and increment the digit before that.

That’s it. That’s literally all there is to it.

My issue lies entirely with people who use algebraic or better logic to fight an elementary arithmetic issue.

It’s not any more of an arithmetic issue than 2/6 == 1/3: As I already said, you need an additional normalisation step. The fundamental issue is that rational numbers do not have unique representations in the systems we’re using.

And, in fact, normalisation in decimal representation is way easier, as the only case to worry about is indeed the repeating nine. All other representations are unique while in the fractional system, all numbers have infinitely many representations.

Instead of telling those people they’re wrong, focus on the flaws of the tools they’re using.

Maths teachers are constantly wrong about everything. Especially in the US which single-handedly gave us the abomination that is PEMDAS.

Instead of blaming mathematicians for talking axiomatically, you should blame teachers for not teaching axiomatic thinking, of teaching procedure instead of laws and why particular sets of laws make sense.

That method I described to get rid of the nines is not mathematical insight. It teaches you nothing. You’re not an ALU, you’re capable of so much more than that, capable of deeper understanding that rote rule application. Don’t sell yourself short.

source
Sort:hotnewtop