Comment on I dunno
mindbleach@sh.itjust.works 3 weeks agoThen why doesn’t the juxtaposition of mc precede the square?
In your chosen book is the example you’re pestering moriquende for, and you can’t say shit about it.
Another: A First Book In Algebra, Boyden 1895, on page 47 (49 in the Gutenberg PDF), in exercise 24, question 18 reads, divide 15(a-b)^3^x^2^ by 3(a-b)x. The answer on page 141 of the PDF is 5(a-b)^2^x. For a=2, b=1, the question and answer get 5x, while the bullshit you’ve made up gets 375x.
Another: Keys To Algebra 1-4’s answer booklet, page 19, upper right: “book 2, page 9” expands 6(ab)^3^ to 6(ab)(ab)(ab), and immediately after that, expands (6ab)^3^ to (6ab)(6ab)(6ab). The bullshit you made up says they should be equal.
SmartmanApps@programming.dev 3 weeks ago
For starters stop calling it “juxtaposition” - it’s a Product/Term. Second, as I already told you, c²=cc, so I don’t know why you’re still going on about it. I have no idea what your point is.
You know I’ve quoted dozens of books, right?
Again I have no idea what you’re talking about.
Ah, ok, NOW I see where you’re getting confused. 6ab²=6abb, but 6(ab)²=6abab. Now spot the difference between 6ab and 6(a+b). Spoiler alert - the latter is a Factorised Term, where separate Terms have been Factorised into 1 term, the former isn’t. 2 different scenario’s, 2 different rules relating to Brackets, the latter being a special case to differentiate between 6ab² and 6a²b²=6(ab)²
P.S.
this is correct - 2+1 is different from 1+2, but (1+2) is identically equal to (2+1) (notice how Brackets affect how it’s evaluated? 😂) - but I had no idea what you meant by “throwing other numbers on there”, so, again, I have no idea what your point is
mindbleach@sh.itjust.works 3 weeks ago
Juxtaposition is key to the bullshit you made up, you infuriating sieve. You made a hundred comments in this thread about how 2*(8)^2^ is different from 2(8)^2^. Here is a Maths textbook saying, you’re fucking wrong.
Here’s another: First Steps In Algebra, Wentworth 1904, on page 143 (as in the Gutenberg PDF), in exercise 54, question 9 reads (x-a)(2x-a)=2(x-b)^2^. The answer on page 247 is x=(2b^2^-a^2^)/(4b-3a). If a=1, b=0, the question and answer get 1/3, and the bullshit you’ve made up does not.
You have harassed a dozen people specifically to insist that 6(ab)^2^ does not equal 6a^2^b^2^. You’ve sassed me specifically to say a variable can be zero, so 6(a+b) can be 6(a+0) can just be 6(a). There is no out for you. This is what you’ve been saying, and you’re just fucking wrong, about algebra, for children.
SmartmanApps@programming.dev 3 weeks ago
Terms/Products is mathematical fact, as is The Distributive Law. Maths textbooks never use the word “juxtaposition”.
Image
Image
That’s right. 1/2(8)²=1/256, 1/2x8²=32, same difference as 8/2(1+3)=1 but 8/2x(1+3)=16
Nope! It doesn’t say that a(b+c)=ax(b+c)
Question about solving an equation and not about solving an expression
Nope! I have never said that, which is why you’re unable to quote me saying that. I said 6(a+b)² doesn’t equal 6x(a+b)², same difference as 8/2(1+3)=1 but 8/2x(1+3)=16
That’s right
Got no idea what you’re talking about
Yes
No
For teenagers, who are taught The Distributive Law in Year 7
mindbleach@sh.itjust.works 3 weeks ago
…
That’s you saying it. You are unambiguously saying a(b)^c^ somehow means (ab)^c^=a^c^b^c^ instead of ab^c^, except when you try to nuh-uh at anyone pointing out that’s what you said. Where the fuck did 256 come from if that’s not exactly what you’re doing?
You’re allegedly an algebra teacher, snipping about terms I am quoting from a textbook you posted, and you wanna pretend 2(x-b)^2^ isn’t precisely what you insist you’re talking about? Fine, here’s yet another example:
A First Book In Algebra, Boyden 1895, on page 47 (49 in the Gutenberg PDF), in exercise 24, question 18 reads, divide 15(a-b)^3^x^2^ by 3(a-b)x. The answer on page 141 of the PDF is 5(a-b)^2^x. For a=2, b=1, the question and answer get 5x, while the bullshit you’ve made up gets 375x.
Show me any book where the equations agree with you. Not words, not acronyms - an answer key, or a worked example. Show me one time that published math has said x(b+c)^n^ gets an x^n^ term. I’ve posted four examples to the contrary and all you’ve got is pretending not to see x(b+c)^n^ right fuckin’ there in each one.